Incompressible Flow in Porous Media with Fractional Diffusion
نویسندگان
چکیده
In this paper we study the heat transfer with a general fractional diffusion term of an incompressible fluid in a porous medium governed by Darcy’s law. We show formation of singularities with infinite energy and for finite energy we obtain existence and uniqueness results of strong solutions for the sub-critical and critical cases. We prove global existence of weak solutions for different cases. Moreover, we obtain the decay of the solution in L, for any p ≥ 2, and the asymptotic behavior is shown. Finally, we prove the existence of an attractor in a weak sense and, for the sub-critical dissipative case with α ∈ (1, 2], we obtain the existence of the global attractor for the solutions in the space H for any s > (N/2) + 1− α.
منابع مشابه
Axi-Symmetric Deformation Due to Various Sources in Saturated Porous Media with Incompressible Fluid
The general solution of equations of saturated porous media with incompressible fluid for two dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and Hankel transforms have been used to investigate the problem. As an application of the approach concentrated source and source over circular region have been taken to show the utility of the approach. The transforme...
متن کاملMagnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium
The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...
متن کاملGlobal well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces
In this paper we study the model of heat transfer in a porous medium with a critical diffusion. We obtain global existence and uniqueness of solutions to the equations of heat transfer of incompressible fluid in Besov spaces Ḃ 3/p p,1 (R ) with 1 ≤ p ≤ ∞ by the method of modulus of continuity and Fourier localization technique. AMS Subject Classification 2000: 76S05, 76D03
متن کاملComparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media
The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...
متن کاملAn advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries
Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...
متن کامل